

Artificial Intelligence in Medicine and Innovation in Clinical Research and Methodology

ARTIFICIAL INTELLIGENCE IN MEDICINE

XXXVIII CYCLE Coordinatore: Prof. Domenico Russo

Al tools for enhanced follow-up of patients with low-back pain

PhD Student: Alemu Sisay Nigru

Supervisor: Prof. Riccardo Leonardi

C1 (Atlas) Introduction C2 (Axis) -Cervical Th5 Th6 -▶ L1-L2 Th7-**Thoracic** Th8 -→ L2-L3 Th9 -Th10 -L3-L4 Th11. Th12 LI. L2 -L3 Lumbar

Sacral

Os sacrum

Lumbar disc herniation is one of the most common intervertebral disc diseases (IDD), resulting in limited movement and unbearable pain levels.

Lumbar discs are small joints that lie between each two vertebrae (L1-L2, L2-L3, L3-L4, L4-L5 and L5-S1).

•Problem: Manual grading of disc pathologies (e.g., Pfirrmann grades, stenosis) is time-consuming and prone to inter-radiologist variability.

SOTA

Background & Objective

• Objective: Validate SpineNetV2, an open-access DL model, for automated detection/grading of disc pathologies across diverse datasets.

• Necessity of External Validation: To ensure the ML model's generalizability, robustness and real-world applicability, it is essential to evaluate its performance on unseen data through external data, and by external experts.

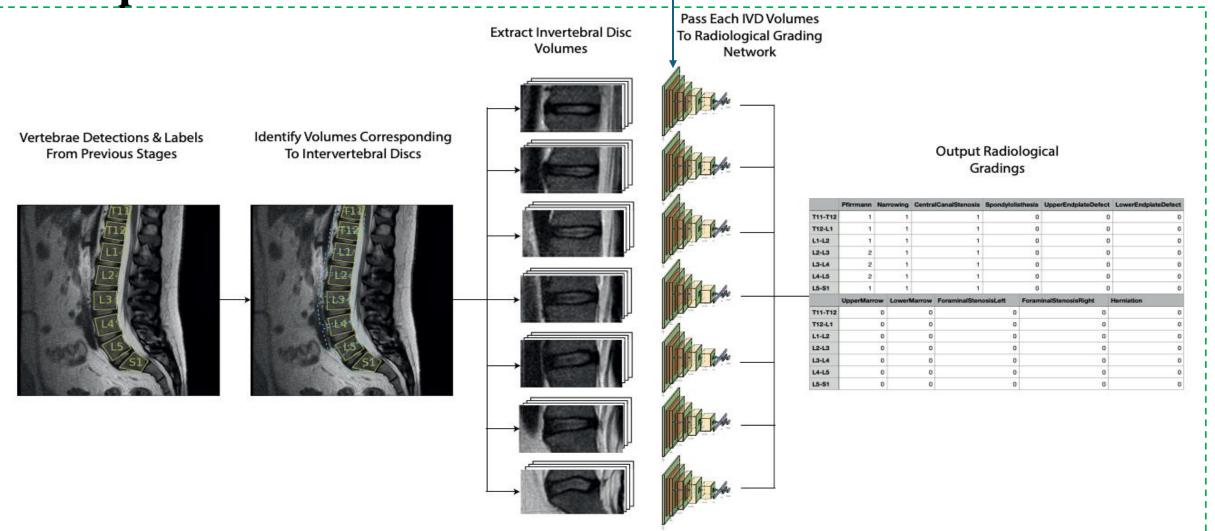
Radiological Features Evaluated

- 1. Disc degeneration (Pfirrmann grade)
- 2. Disc Narrowing (height loss)
- 3. Central canal stenosis
- 4. Spondylolisthesis
- 5. Endplate defects (upper and lower)
- 6. Marrow/Modic changes (upper and lower)
- 7. Foraminal stenosis (left and right)
- 8. Herniation



SpineNetV2

Conventional ResNet32 model



Dataset, Cohort and & Validation Pipeline

- •Sample size: 1,747 lumbosacral discs collected from 353 patients (with a mean age of 54 ± 15.4 years, and 44.5% female).
- •Imaging used: Sagittal T2-weighted MRI
- •Ground truth: Consensus grading by 2 expert radiologists
- •Exclusion: Incomplete scans, artefacts

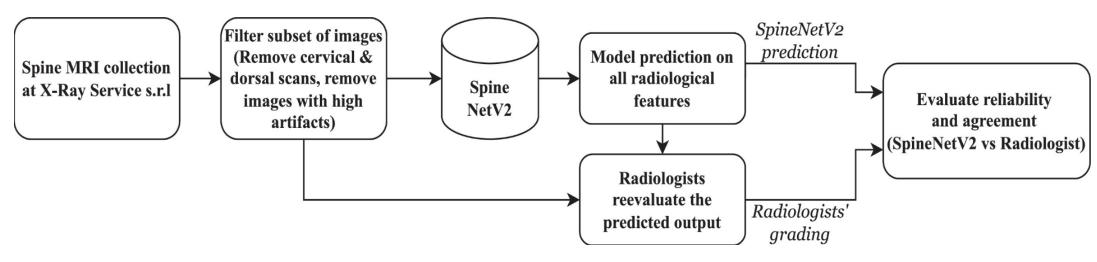


Fig: Summary of steps in the external validation process used in this study.

De-identification of patients data

GDPR & HIPAA-Compliant DICOM Anonymization

• Metadata Scrubbing:

Removes names, addresses, dates, private tags & unique identifiers.

- Data Mapping & Transformation:
 - PatientID, PatientSex, PatientAge \rightarrow Rewritten with randomized or padded values.
 - •Sequential attributes like RequestAttributesSequence are deleted.
- Selective Targeting:

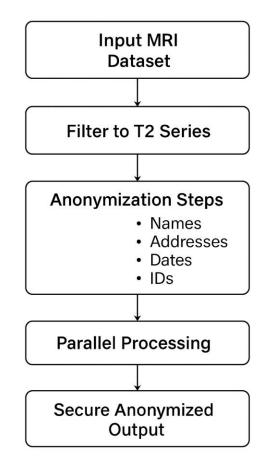
Processes only T2 AX and T2 SAG folders for relevant clinical imaging.

• Parallel Processing:

Uses multiprocessing to handle 900+ patient folders efficiently.

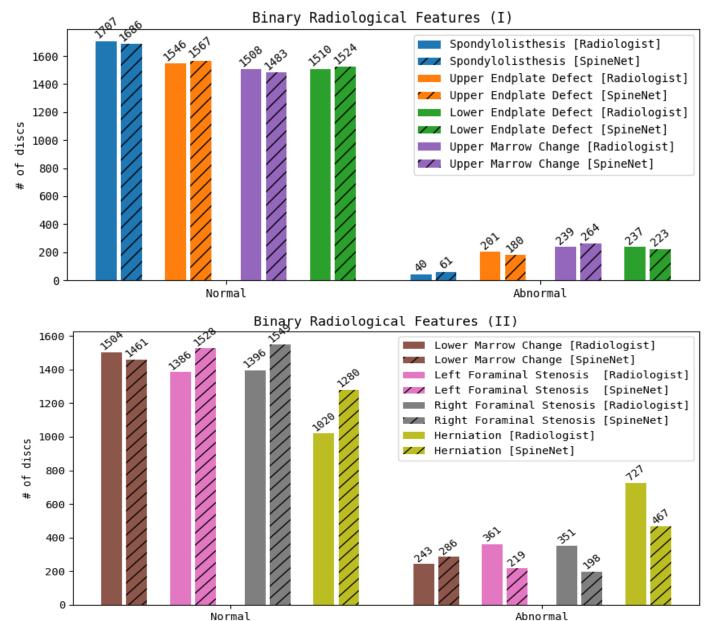
- Checksum Validation:
 - Confirms DICOM structural integrity post-anonymization.
- Logging & Audit Trail:

Logs all actions to anonymization.log for traceability and error tracking.



Code available on: https://github.com/AlexSisay/Dicom_deidentify.git

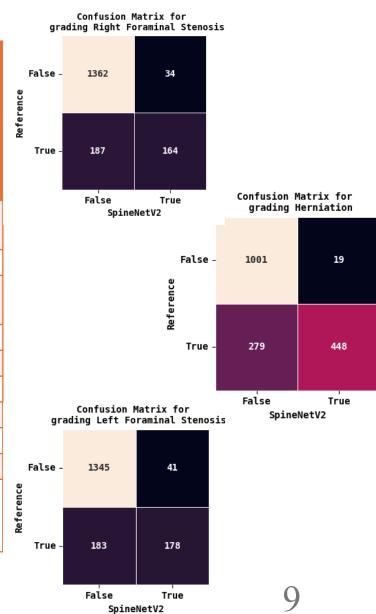
Overall Performance of the validation process



Feature-wise grading agreement

Metrics	Pfirrmann	Narrowing	Central Canal Stenosis	Spondylolisthesis	Upper endplate Defect	Lower Endplate Defect	Upper Marrow Change	Lower Marrow Change	Right Foraminal Stenosis	Left Foraminal Stenosis	Herniation
Accuracy	0.796	0.867	0.971	0.983	0.948	0.942	0.940	0.931	0.852	0.854	0.790
BAS	0.794	0.849	0.779	0.988	0.849	0.863	0.895	0.892	0.702	0.691	0.759
Precision	0.799	0.869	0.971	0.983	0.946	0.940	0.943	0.937	0.841	0.843	0.810
Recall	0.796	0.868	0.971	0.983	0.948	0.942	0.940	0.931	0.852	0.854	0.790
F1 Score	0.796	0.868	0.971	0.985	0.947	0.941	0.941	0.933	0.838	0.838	0.779
BSL	0.081	0.066	0.014	0.016	0.052	0.058	0.060	0.070	0.148	0.146	0.210
К	0.738	0.799	0.749	0.705	0.732	0.745	0.756	0.731	0.473	0.457	0.546
LCCC	0.952	0.972	0.932	0.745	0.880	0.920	0.896	0.873	0.542	0.530	0.630
MCC	0.738	0.799	0.749	0.721	0.733	0.745	0.757	0.734	0.494	0.483	0.576

Where: BAS - Balanced Accuracy Score, BSL - Brier score loss, κ - Cohen's kappa, LCCC - Lin's Concordance Correlation Coefficient, MCC- Mathews correlation coefficient.



Conclusion & Future Directions

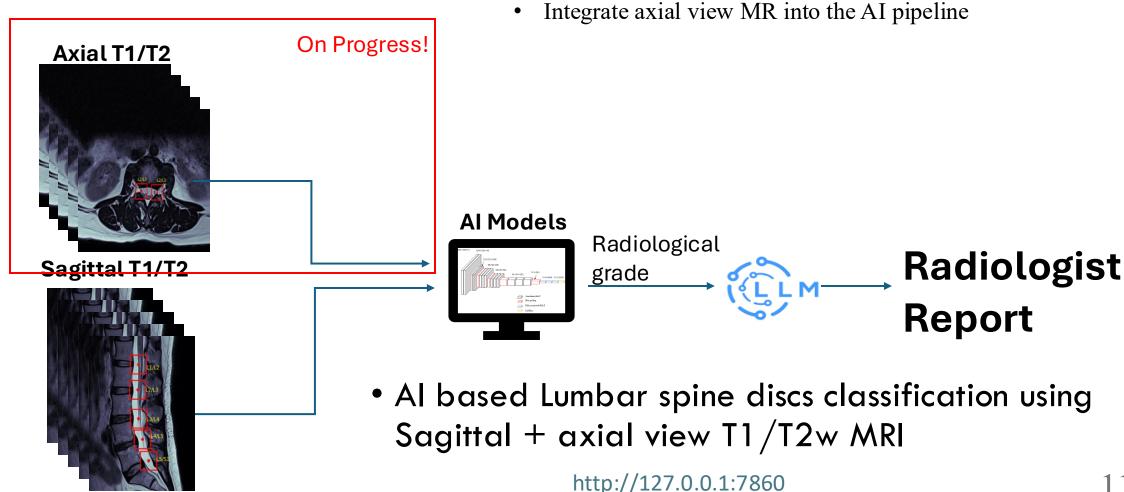
	Pfirrman n	Narrowing		Spondylolisthesi s	Upper Endplate Defect	Lower Endplate Defect	Upper Marrow	Lower Marrow	Stenosis	Foraminal Stenosis Right	Herniation
SpineNet V2	Ø		₹					✓	×	×	×

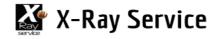
- **Strengths:** Robust generalizability across institutions, efficient processing (~ 20 seconds per scan on CPU and only 3 seconds on GPU).
- Limitations: Variability in foraminal stenosis and herniation grading; need for integration of axial scans.
- Clinical Relevance: Reduces reporting time, supports large-scale research.
- Next Steps: Integration of axial scans, integration with radiological workflows.

Nigru et. al. External validation of SpineNetV2 on a comprehensive set of radiological features for grading lumbosacral disc pathologies, North American Spine Society Journal (NASSJ), 2024, DOI: https://doi.org/10.1016/j.xnsj.2024.100564

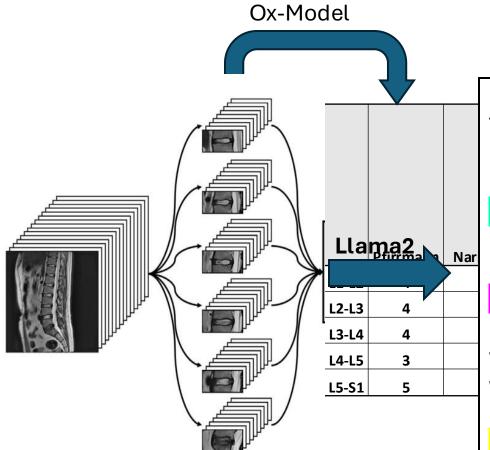
1()

So, what further refinement should be made?





SOTA Review + end to end use case



Medical Report: The patient, Agost presented with lov left leg. The Pfirrm degeneration at the Google Translate API disc tevet. cem/al L2-L3, and L3-L4 l narrowing at the re was not present. were also not pres present at the L2-**Herniation** was pre will be made base a control patront of the

medical history.

Referto medico:

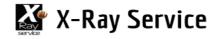
Il paziente, Agosti, è un maschio di 81 anni che presentava dolore lombare e intorpidimento alla gamba sinistra. La classificazione di Pfirrmann ha rivelato una grave degenerazione a livello del disco L1-L2, L2-L3 e L3-L4, con moderata degenerazione a livello L4-L5 e L5-S1. La stenosi del canale centrale era presente ai livelli L1-L2, L2-L3 e L3-L4, con un restringimento da lieve a moderato ai restanti livelli. Non era presente spondilolistesi. Non erano presenti nemmeno difetti della placca terminale superiore e inferiore. Era presente una stenosi foraminale ai livelli L2-L3 e L5-S1 su entrambi i lati. Era presente ernia a livello L2-L3.

Le raccomandazioni per ulteriori imaging e trattamenti verranno formulate in base ai sintomi e Recommendation all'anamnesi medica del paziente.



2. Al-Driven Exploration of Patient-Reported Outcomes in Chronic Spinal Pain:

From EDA to Machine Learning with Psychosocial and Disability Metrics



Motivation and Background

- Chronic back pain: a multidimensional health challenge.
- Psychological, social, and disability components often underrepresented in traditional analyses.
- Role of AI: uncover hidden patterns, patient clusters, and actionable insights.

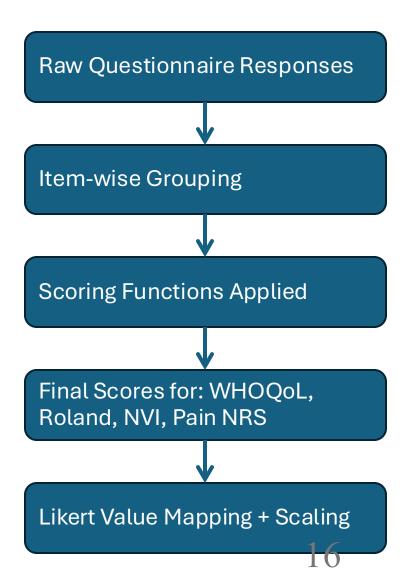
Dataset Overview

- Data has been collected from 113 consenting patients, with collection ongoing.
- 4 primary instruments:
 - Roland-Morris Disability Questionnaire (23 items)
 - WHOQoL-BREF (Physical, Psychological, Social, Environmental)
 - COPE NVI (Coping Orientation to Problems Experienced Nuova versione Italiana) -- Coping Strategy
 - Pain NRS

Raw Questionnaire to Scoring

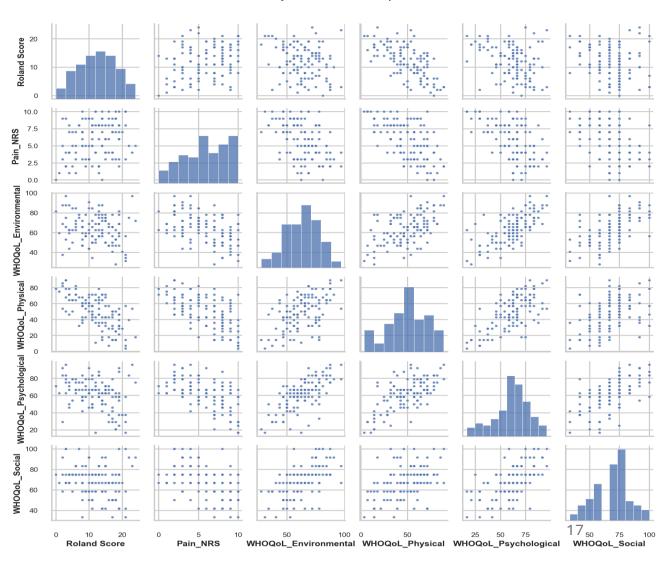
Profesissore is computed from item-level responses using official scoring procedures:

Instrument	trument Items Score I		Notes		
Roland-Morris	24	0-24	Sum of items; higher = greater disability		
WHOQoL- BREF	26	0-100 per domain	Transformed to 0–100 scale per WHO manual; Higher = Better QoL		
Coping Strategies (NVI-25)	25	1–5 Likert per strategy	Mean of grouped items per strategy; Higher = Mostly used strategy		
Pain NRS	1	1-10	1-10; higher = severe pain		



Exploratory Data Analysis (EDA) KEY Clinical Relationships

- **Distributions** of Roland Score, WHOQoL dimensions, Pain NRS.
- Pairwise correlations



Correlation Heatmap

- 0.75

- 0.50

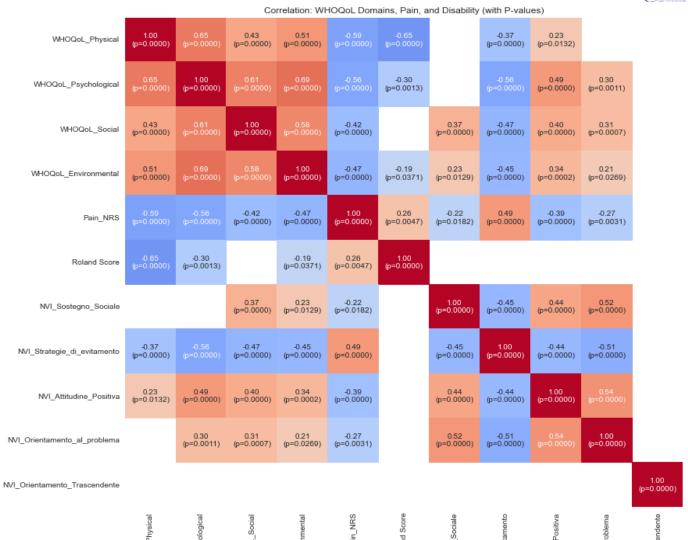
- 0.25

- 0.00

- -0.25

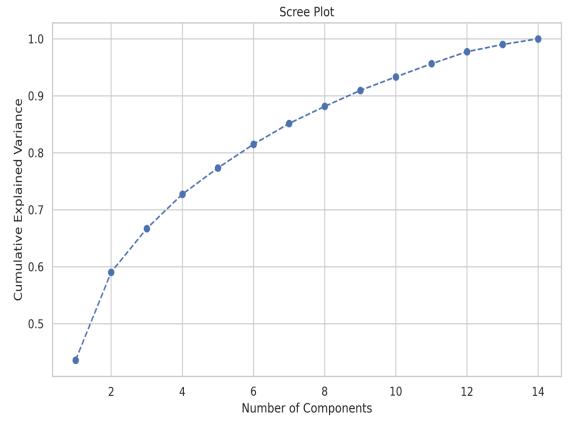
-0.50

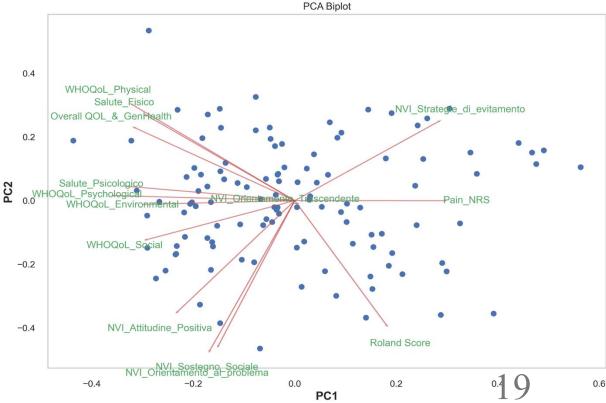
Significance mask applied:
p_values >= 0.05



Dimensionality Reduction – PCA

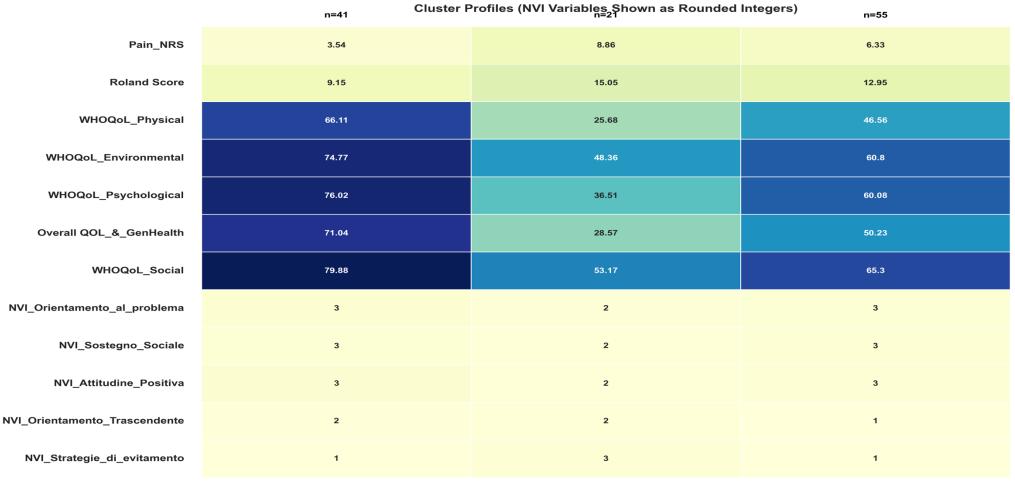
- Dimensionality Reduction PCA
 - PCA to reduce noise and explore latent structure
 - Top 2 PCs explain variance across Roland, WHOQoL, and NVI variables





Unsupervised Learning (Clustering)

• KMeans clustering on PCA features (k=3 clusters)



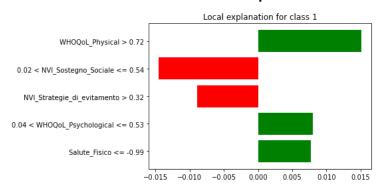
Cluster

2

Works on progress:

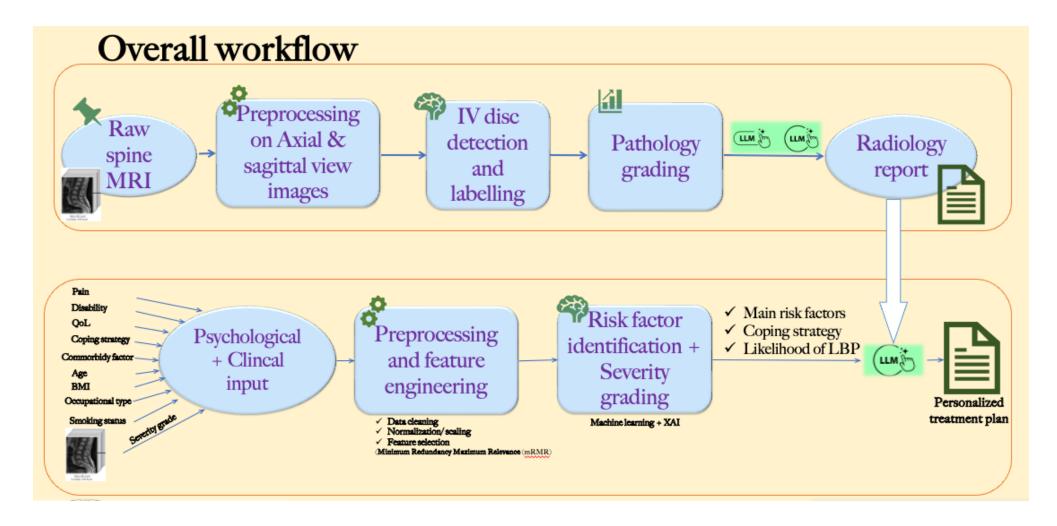
- Add severity grades as a new variable and train a supervised ML model to predict the severity level (from their psycho-social + clinical data).
- Add a feature of explainability to identify the relevant features of the model prediction (xAI)
- Integration with the previous image model and introduce personalized treatment plan.

LIME example



- This helps in **debugging** the model's behavior and help us identifying main risk factors.
- We can easily spot if the model is relying on irrelevant features.
- Supports model transparency for regulatory and trust requirements (like GDPR, HIPAA).

End to End architecture



Thank You!